lastID = -290697
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2020-01-31 21:42:00 Administrator
  • 2020-01-31 21:41:59 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER

DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER

DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER
Abstract
Aberdeen Proving Ground (APG) has been a center for the development, testing, and manufacture of military-related chemicals since World War I, with industrial activities concentrated in the Canal Creek Area. Groundwater at APG has been impacted by these historical practices. The APG Installation Restoration Program (IRP) is implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process throughout APG. A Record of Decision (ROD) has been completed for the East Canal Creek Area Plume, specifying groundwater extraction, treatment, and beneficial reuse or discharge of treated water.Volatile organic compounds (VOCs) are the primary contaminants of concern in the East Canal Creek Area plume. In addition to common commercial solvents such as trichloroethylene (TCE) and its breakdown products, the East Canal Creek Area plume is contaminated with 1,1,2,2- tetrachloroethane (1,1,2,2-TeCA). Based upon preliminary treatability testing during the CERCLA Feasibility Study (FS), the treatment approach specified in the ROD includes precipitation and filtration to remove iron and manganese followed by synthetic resin adsorption with on-site steam regeneration to remove VOCs. The plant was intended to provide a supplemental potable water supply to the base or to discharge to surface water.A predesign pilot study was conducted to evaluate resin adsorption performance, and support the design of the groundwater treatment plant for the East Canal Creek Area groundwater plume. The primary pilot test objectives were to confirm the effectiveness of the medium to remove VOCs to levels suitable for potable water beneficial reuse (Safe Drinking Water Act [SDWA] Maximum Contaminant Levels [MCLs], Maximum Contaminant Level Goals [MCLGs], or riskbased standards) or surface water discharge (National Pollutant Discharge Elimination System [NPDES]-equivalent limit, including Ambient Water Quality Criteria), and to define the capacity of the media after multiple exhaustion and regeneration cycles. The pilot plant was constructed at APG, and testing was conducted on groundwater from an existing well within the Canal Creek Area plume. Eight column exhaustion and nine regeneration cycles were completed during the testing program. The pilot treatment system included pretreatment equipment to remove iron and manganese from the groundwater followed by two columns, in series, of Ambersorb® 563 media operating in lead-lag mode to increase the treatment run length while producing final effluent containing low to non-detectable VOCs. At or near breakthrough for each test run, the lead column was regenerated with steam to remove the VOCs as a vapor, which was condensed to produce an aqueous and an organic phase. Samples were collected for VOC analysis at the firststage influent and effluent (before and after the lead column) and the final (lag column) effluent. The principal VOCs found in the supply well for the pilot test were cis- and trans-1,2- dichloroethene (1,2-DCE), TCE, vinyl chloride (VC), and 1,1,2,2-TeCA. The total VOC concentration of the influent ranged between approximately 2,000 μg/L and 3,100 μg/L. VC is a critical parameter in the design and operation of this treatment technology because it is the first to break through the lead column, thereby defining the adsorption capacity. It is also noncondensable during regeneration and requires capture in a vapor control system.Results of the pilot study demonstrate that with proper control of the service cycle and regeneration of the media, the selected treatment train will produce water containing no detectable VOCs for extended periods. The volumetric VOC loading capacity on the resin demonstrated by the pilot test would allow a 22-day service cycle at design contact times after each regeneration. The mass loading capacity for the limiting parameter, VC, in terms of mass VC/ft3 of resin, was proportional to the influent VC concentration, over the range of conditions observed in the pilot test, resulting in a fixed volumetric capacity over the range of expected VC levels. Because trace metals and solids may foul the resin bed, the full-scale design was revised to incorporate a barrier filter to remove micron-size solids from the influent water to the columns. Design, construction, and startup of the facility have been completed and the facility has been in full-scale operation since April 2003. In the first 11 months of full-scale operation, approximately 71 million gallons of contaminated groundwater were treated with an average total VOC removal efficiency of 96%.
Aberdeen Proving Ground (APG) has been a center for the development, testing, and manufacture of military-related chemicals since World War I, with industrial activities concentrated in the Canal Creek Area. Groundwater at APG has been impacted by these historical practices. The APG Installation Restoration Program (IRP) is implementing the Comprehensive Environmental Response, Compensation, and...
Author(s)
George A. PriorWilliam L. LoweJoseph P. GrossCorinne Murphy
SourceProceedings of the Water Environment Federation
SubjectSession 65: Remediation and Leachate Treatment
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2004
ISSN1938-6478
SICI1938-6478(20040101)2004:10L.246;1-
DOI10.2175/193864704784131491
Volume / Issue2004 / 10
Content sourceWEFTEC
First / last page(s)246 - 266
Copyright2004
Word count700

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER
Pricing
Non-member price: $11.50
Member price:
-290697
Get access
-290697
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER
Abstract
Aberdeen Proving Ground (APG) has been a center for the development, testing, and manufacture of military-related chemicals since World War I, with industrial activities concentrated in the Canal Creek Area. Groundwater at APG has been impacted by these historical practices. The APG Installation Restoration Program (IRP) is implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process throughout APG. A Record of Decision (ROD) has been completed for the East Canal Creek Area Plume, specifying groundwater extraction, treatment, and beneficial reuse or discharge of treated water.Volatile organic compounds (VOCs) are the primary contaminants of concern in the East Canal Creek Area plume. In addition to common commercial solvents such as trichloroethylene (TCE) and its breakdown products, the East Canal Creek Area plume is contaminated with 1,1,2,2- tetrachloroethane (1,1,2,2-TeCA). Based upon preliminary treatability testing during the CERCLA Feasibility Study (FS), the treatment approach specified in the ROD includes precipitation and filtration to remove iron and manganese followed by synthetic resin adsorption with on-site steam regeneration to remove VOCs. The plant was intended to provide a supplemental potable water supply to the base or to discharge to surface water.A predesign pilot study was conducted to evaluate resin adsorption performance, and support the design of the groundwater treatment plant for the East Canal Creek Area groundwater plume. The primary pilot test objectives were to confirm the effectiveness of the medium to remove VOCs to levels suitable for potable water beneficial reuse (Safe Drinking Water Act [SDWA] Maximum Contaminant Levels [MCLs], Maximum Contaminant Level Goals [MCLGs], or riskbased standards) or surface water discharge (National Pollutant Discharge Elimination System [NPDES]-equivalent limit, including Ambient Water Quality Criteria), and to define the capacity of the media after multiple exhaustion and regeneration cycles. The pilot plant was constructed at APG, and testing was conducted on groundwater from an existing well within the Canal Creek Area plume. Eight column exhaustion and nine regeneration cycles were completed during the testing program. The pilot treatment system included pretreatment equipment to remove iron and manganese from the groundwater followed by two columns, in series, of Ambersorb® 563 media operating in lead-lag mode to increase the treatment run length while producing final effluent containing low to non-detectable VOCs. At or near breakthrough for each test run, the lead column was regenerated with steam to remove the VOCs as a vapor, which was condensed to produce an aqueous and an organic phase. Samples were collected for VOC analysis at the firststage influent and effluent (before and after the lead column) and the final (lag column) effluent. The principal VOCs found in the supply well for the pilot test were cis- and trans-1,2- dichloroethene (1,2-DCE), TCE, vinyl chloride (VC), and 1,1,2,2-TeCA. The total VOC concentration of the influent ranged between approximately 2,000 μg/L and 3,100 μg/L. VC is a critical parameter in the design and operation of this treatment technology because it is the first to break through the lead column, thereby defining the adsorption capacity. It is also noncondensable during regeneration and requires capture in a vapor control system.Results of the pilot study demonstrate that with proper control of the service cycle and regeneration of the media, the selected treatment train will produce water containing no detectable VOCs for extended periods. The volumetric VOC loading capacity on the resin demonstrated by the pilot test would allow a 22-day service cycle at design contact times after each regeneration. The mass loading capacity for the limiting parameter, VC, in terms of mass VC/ft3 of resin, was proportional to the influent VC concentration, over the range of conditions observed in the pilot test, resulting in a fixed volumetric capacity over the range of expected VC levels. Because trace metals and solids may foul the resin bed, the full-scale design was revised to incorporate a barrier filter to remove micron-size solids from the influent water to the columns. Design, construction, and startup of the facility have been completed and the facility has been in full-scale operation since April 2003. In the first 11 months of full-scale operation, approximately 71 million gallons of contaminated groundwater were treated with an average total VOC removal efficiency of 96%.
Aberdeen Proving Ground (APG) has been a center for the development, testing, and manufacture of military-related chemicals since World War I, with industrial activities concentrated in the Canal Creek Area. Groundwater at APG has been impacted by these historical practices. The APG Installation Restoration Program (IRP) is implementing the Comprehensive Environmental Response, Compensation, and...
Author(s)
George A. PriorWilliam L. LoweJoseph P. GrossCorinne Murphy
SourceProceedings of the Water Environment Federation
SubjectSession 65: Remediation and Leachate Treatment
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2004
ISSN1938-6478
SICI1938-6478(20040101)2004:10L.246;1-
DOI10.2175/193864704784131491
Volume / Issue2004 / 10
Content sourceWEFTEC
First / last page(s)246 - 266
Copyright2004
Word count700

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
George A. Prior# William L. Lowe# Joseph P. Gross# Corinne Murphy. DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 1 Oct. 2025. <https://www.accesswater.org?id=-290697CITANCHOR>.
George A. Prior# William L. Lowe# Joseph P. Gross# Corinne Murphy. DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed October 1, 2025. https://www.accesswater.org/?id=-290697CITANCHOR.
George A. Prior# William L. Lowe# Joseph P. Gross# Corinne Murphy
DEMONSTRATION OF RESIN ADSORPTION TECHNOLOGY FOR TREATMENT OF VOCs IN GROUNDWATER
Access Water
Water Environment Federation
December 22, 2018
October 1, 2025
https://www.accesswater.org/?id=-290697CITANCHOR