lastID = -287388
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-06-14 20:23:09 Adam Phillips
  • 2022-06-14 20:23:08 Adam Phillips
  • 2020-03-27 00:08:19 Adam Phillips
  • 2020-03-27 00:08:18 Adam Phillips
  • 2020-01-31 20:29:08 Administrator
  • 2020-01-31 20:29:07 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options

Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options

Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options
Abstract
This paper discusses various biofilter design issues, the impacts of media choices on biofilter design and operating issues, and compares in-ground, open vessel biofilter systems to closed vessel, modular systems. The paper discusses system configurations, cost, and operational differences as well as provides a summary of representative field performance in terms of odor unit removal and species specific performance for H2S, ammonia, and reduced sulfur organic species.Biofiltration is the use of microorganisms growing in a media bed to remove and oxidize compounds in a foul airstream. This technology is becoming widely accepted as an effective odor control technology at municipal wastewater treatment plants throughout the United States and Canada. Biofilters have been shown to effectively remove odor causing compounds such as hydrogen sulfide, ammonia, methyl mercaptan, dimethyl disulfide, other odorous reduced sulfur organic compounds and volatile organic compounds (VOCs). Biofilters are cost competitive when compared to other odor control technologies such as wet scrubbers, carbon adsorption and thermal treatment.A typical biofilter consists of a media bed containing contaminant-degrading microorganisms, a medium to support the microorganism colony, a medium support structure, a foul air distribution system and a method of controlling the biofilter moisture content. Two general types of biofilter configurations are available: in-ground, open vessel systems and modular closed vessel systems. The open bed systems typically have a low capital cost requirement compared to closed vessel biofilters, but are more land intensive. Closed vessel, modular biofilters are offered by various manufacturers. Costs are typically higher than costs for an open bed biofilter treating the same airstream. The main advantages of closed vessel biofilters include a smaller footprint requirement, automated controls, less exposure to moisture variations, and the ability to effectively monitor emissions.A suitable environment must be provided to sustain the microorganisms responsible for the biofiltration process. Operation and design factors to consider include moisture control, nutrients, stability, foul air residence time and temperature, airflow distribution, leachate control and media. Various biofilter media are available, and the selection of the media type has evolved over time and continues to evolve. Common materials include soil, peat, bark, wood chips, compost, heather and inert additives such as plastic packing, perilite and ceramics. The most common media choices are soil, bark and compost. A mixture of soil, bark, compost and synthetic material is also a popular choice. There are advantages and disadvantages for each type of media that must be carefully evaluated during the biofilter design process.Biofilter performance at municipal wastewater treatment plants has been very positive. Removal in excess of 99% has been reported for compounds such as hydrogen sulfide, mercaptan, and dimethyl sulfide. In addition, field experience indicates that hydrogen sulfide inlet concentrations upwards of 150 ppm can experience 99% removal.
This paper discusses various biofilter design issues, the impacts of media choices on biofilter design and operating issues, and compares in-ground, open vessel biofilter systems to closed vessel, modular systems. The paper discusses system configurations, cost, and operational differences as well as provides a summary of representative field performance in terms of odor unit removal and species...
Author(s)
Christopher C. EasterChristine C. Okonak
SourceProceedings of the Water Environment Federation
SubjectSESSION 11 EMISSIONS FROM BIOSOLIDS PROCESSING AND COMPOSTING FACILITIES
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2000
ISSN1938-6478
SICI1938-6478(20000101)2000:3L.811;1-
DOI10.2175/193864700785303646
Volume / Issue2000 / 3
Content sourceOdors and Air Pollutants Conference
First / last page(s)811 - 825
Copyright2000
Word count465

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options
Pricing
Non-member price: $11.50
Member price:
-287388
Get access
-287388
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options
Abstract
This paper discusses various biofilter design issues, the impacts of media choices on biofilter design and operating issues, and compares in-ground, open vessel biofilter systems to closed vessel, modular systems. The paper discusses system configurations, cost, and operational differences as well as provides a summary of representative field performance in terms of odor unit removal and species specific performance for H2S, ammonia, and reduced sulfur organic species.Biofiltration is the use of microorganisms growing in a media bed to remove and oxidize compounds in a foul airstream. This technology is becoming widely accepted as an effective odor control technology at municipal wastewater treatment plants throughout the United States and Canada. Biofilters have been shown to effectively remove odor causing compounds such as hydrogen sulfide, ammonia, methyl mercaptan, dimethyl disulfide, other odorous reduced sulfur organic compounds and volatile organic compounds (VOCs). Biofilters are cost competitive when compared to other odor control technologies such as wet scrubbers, carbon adsorption and thermal treatment.A typical biofilter consists of a media bed containing contaminant-degrading microorganisms, a medium to support the microorganism colony, a medium support structure, a foul air distribution system and a method of controlling the biofilter moisture content. Two general types of biofilter configurations are available: in-ground, open vessel systems and modular closed vessel systems. The open bed systems typically have a low capital cost requirement compared to closed vessel biofilters, but are more land intensive. Closed vessel, modular biofilters are offered by various manufacturers. Costs are typically higher than costs for an open bed biofilter treating the same airstream. The main advantages of closed vessel biofilters include a smaller footprint requirement, automated controls, less exposure to moisture variations, and the ability to effectively monitor emissions.A suitable environment must be provided to sustain the microorganisms responsible for the biofiltration process. Operation and design factors to consider include moisture control, nutrients, stability, foul air residence time and temperature, airflow distribution, leachate control and media. Various biofilter media are available, and the selection of the media type has evolved over time and continues to evolve. Common materials include soil, peat, bark, wood chips, compost, heather and inert additives such as plastic packing, perilite and ceramics. The most common media choices are soil, bark and compost. A mixture of soil, bark, compost and synthetic material is also a popular choice. There are advantages and disadvantages for each type of media that must be carefully evaluated during the biofilter design process.Biofilter performance at municipal wastewater treatment plants has been very positive. Removal in excess of 99% has been reported for compounds such as hydrogen sulfide, mercaptan, and dimethyl sulfide. In addition, field experience indicates that hydrogen sulfide inlet concentrations upwards of 150 ppm can experience 99% removal.
This paper discusses various biofilter design issues, the impacts of media choices on biofilter design and operating issues, and compares in-ground, open vessel biofilter systems to closed vessel, modular systems. The paper discusses system configurations, cost, and operational differences as well as provides a summary of representative field performance in terms of odor unit removal and species...
Author(s)
Christopher C. EasterChristine C. Okonak
SourceProceedings of the Water Environment Federation
SubjectSESSION 11 EMISSIONS FROM BIOSOLIDS PROCESSING AND COMPOSTING FACILITIES
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2000
ISSN1938-6478
SICI1938-6478(20000101)2000:3L.811;1-
DOI10.2175/193864700785303646
Volume / Issue2000 / 3
Content sourceOdors and Air Pollutants Conference
First / last page(s)811 - 825
Copyright2000
Word count465

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Christopher C. Easter# Christine C. Okonak. Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 1 Jul. 2025. <https://www.accesswater.org?id=-287388CITANCHOR>.
Christopher C. Easter# Christine C. Okonak. Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed July 1, 2025. https://www.accesswater.org/?id=-287388CITANCHOR.
Christopher C. Easter# Christine C. Okonak
Biofilter Systems for Odor Control in Wastewater Treatment Applications: An Overview of Issues and Options
Access Water
Water Environment Federation
December 22, 2018
July 1, 2025
https://www.accesswater.org/?id=-287388CITANCHOR