lastID = -288136
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
Methods for Enhancing the Desorption of High Explosives from Activated Carbon
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2020-02-01 01:28:15 Administrator
  • 2020-02-01 01:28:14 Administrator
  • 2020-02-01 01:28:13 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
Methods for Enhancing the Desorption of High Explosives from Activated Carbon

Methods for Enhancing the Desorption of High Explosives from Activated Carbon

Methods for Enhancing the Desorption of High Explosives from Activated Carbon

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
Methods for Enhancing the Desorption of High Explosives from Activated Carbon
Abstract
Adsorption to granular activated carbon (GAC) is an effective method for removing the high explosives RDX and HMX from contaminated water. However, the process is relatively expensive because of replacement and disposal costs for spent GAC. One potential method for reducing operating costs is off-line bioregeneration, in which contaminants are desorbed from GAC and biodegraded in a separate reactor. Because slow desorption kinetics may impede the regeneration of spent GAC, several methods for increasing the rate and extent of desorption of RDX and HMX were explored. The specific objectives of this research were to determine the effectiveness of several enhanced desorption methods and to determine if existing adsorption models could accurately predict enhanced desorption of contaminants in small-scale columns.Batch tests were used to test the effectiveness of cosolvents, surfactants, and cyclodextrins in desorbing RDX from GAC. At an initial RDX loading of 71.1 mg/g, only 3% of the adsorbed RDX was desorbed by water over 11 days, whereas 92.6% of the RDX was desorbed by 100% ethanol over the same period. Lower concentrations of ethanol in solutions with water were less effective in desorbing the RDX. At all concentrations in water, methanol was somewhat less effective than ethanol. One anionic and three nonionic surfactants were tested at three concentrations each. Sodium dodecyl sulfate (SDS) was the most effective of the tested surfactants. At a concentration of 500 mg/L (about 20% of its critical micelle concentration, or CMC), SDS desorbed 56% of the RDX. At a concentration of about twice its CMC, SDS desorbed slightly more than 70% of the RDX. β-cyclodextrin provided minimal improvement over water, desorbing 5.3% to 8.1% of the RDX at concentrations of 1 g/L and 10 g/L, respectively.Two ethanol solutions (5% and 10%) and two of the surfactants (SDS and Tween 80) were used to desorb RDX from loaded GAC in small scale, continuous flow column tests. Of the enhanced desorption solutions that were tested, the 10% ethanol solution was the most effective in desorbing RDX with the least amount of fluid. To desorb 50% of the adsorbed RDX required 22,500 bed volumes of buffered water, whereas only 4,300 bed volumes of 5% ethanol and 2,100 bed volumes of 10% ethanol were required. SDS at 500 mg/L was very effective, desorbing RDX nearly as fast as the 5% ethanol solution; however, SDS precipitated in the GAC column, impeding flow. Initial column modeling efforts successfully predicted the breakthrough curve for adsorption of RDX from water and desorption of RDX from GAC with water. Two different approaches were attempted to model enhanced desorption with ethanol solutions. The approach that assumed competition between ethanol and adsorbed solutes was the more accurate of the two approaches.
Adsorption to granular activated carbon (GAC) is an effective method for removing the high explosives RDX and HMX from contaminated water. However, the process is relatively expensive because of replacement and disposal costs for spent GAC. One potential method for reducing operating costs is off-line bioregeneration, in which contaminants are desorbed from GAC and biodegraded in a separate...
Author(s)
Matthew C. MorleyGerald E. Speitel
SourceProceedings of the Water Environment Federation
SubjectSession 21 - Research Symposium: Physical-Chemical Processes
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2001
ISSN1938-6478
SICI1938-6478(20010101)2001:14L.84;1-
DOI10.2175/193864701802779206
Volume / Issue2001 / 14
Content sourceWEFTEC
First / last page(s)84 - 98
Copyright2001
Word count458

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Methods for Enhancing the Desorption of High Explosives from Activated Carbon'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
Methods for Enhancing the Desorption of High Explosives from Activated Carbon
Pricing
Non-member price: $11.50
Member price:
-288136
Get access
-288136
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Methods for Enhancing the Desorption of High Explosives from Activated Carbon'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
Methods for Enhancing the Desorption of High Explosives from Activated Carbon
Abstract
Adsorption to granular activated carbon (GAC) is an effective method for removing the high explosives RDX and HMX from contaminated water. However, the process is relatively expensive because of replacement and disposal costs for spent GAC. One potential method for reducing operating costs is off-line bioregeneration, in which contaminants are desorbed from GAC and biodegraded in a separate reactor. Because slow desorption kinetics may impede the regeneration of spent GAC, several methods for increasing the rate and extent of desorption of RDX and HMX were explored. The specific objectives of this research were to determine the effectiveness of several enhanced desorption methods and to determine if existing adsorption models could accurately predict enhanced desorption of contaminants in small-scale columns.Batch tests were used to test the effectiveness of cosolvents, surfactants, and cyclodextrins in desorbing RDX from GAC. At an initial RDX loading of 71.1 mg/g, only 3% of the adsorbed RDX was desorbed by water over 11 days, whereas 92.6% of the RDX was desorbed by 100% ethanol over the same period. Lower concentrations of ethanol in solutions with water were less effective in desorbing the RDX. At all concentrations in water, methanol was somewhat less effective than ethanol. One anionic and three nonionic surfactants were tested at three concentrations each. Sodium dodecyl sulfate (SDS) was the most effective of the tested surfactants. At a concentration of 500 mg/L (about 20% of its critical micelle concentration, or CMC), SDS desorbed 56% of the RDX. At a concentration of about twice its CMC, SDS desorbed slightly more than 70% of the RDX. β-cyclodextrin provided minimal improvement over water, desorbing 5.3% to 8.1% of the RDX at concentrations of 1 g/L and 10 g/L, respectively.Two ethanol solutions (5% and 10%) and two of the surfactants (SDS and Tween 80) were used to desorb RDX from loaded GAC in small scale, continuous flow column tests. Of the enhanced desorption solutions that were tested, the 10% ethanol solution was the most effective in desorbing RDX with the least amount of fluid. To desorb 50% of the adsorbed RDX required 22,500 bed volumes of buffered water, whereas only 4,300 bed volumes of 5% ethanol and 2,100 bed volumes of 10% ethanol were required. SDS at 500 mg/L was very effective, desorbing RDX nearly as fast as the 5% ethanol solution; however, SDS precipitated in the GAC column, impeding flow. Initial column modeling efforts successfully predicted the breakthrough curve for adsorption of RDX from water and desorption of RDX from GAC with water. Two different approaches were attempted to model enhanced desorption with ethanol solutions. The approach that assumed competition between ethanol and adsorbed solutes was the more accurate of the two approaches.
Adsorption to granular activated carbon (GAC) is an effective method for removing the high explosives RDX and HMX from contaminated water. However, the process is relatively expensive because of replacement and disposal costs for spent GAC. One potential method for reducing operating costs is off-line bioregeneration, in which contaminants are desorbed from GAC and biodegraded in a separate...
Author(s)
Matthew C. MorleyGerald E. Speitel
SourceProceedings of the Water Environment Federation
SubjectSession 21 - Research Symposium: Physical-Chemical Processes
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2001
ISSN1938-6478
SICI1938-6478(20010101)2001:14L.84;1-
DOI10.2175/193864701802779206
Volume / Issue2001 / 14
Content sourceWEFTEC
First / last page(s)84 - 98
Copyright2001
Word count458

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Matthew C. Morley# Gerald E. Speitel. Methods for Enhancing the Desorption of High Explosives from Activated Carbon. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 6 Jun. 2025. <https://www.accesswater.org?id=-288136CITANCHOR>.
Matthew C. Morley# Gerald E. Speitel. Methods for Enhancing the Desorption of High Explosives from Activated Carbon. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 6, 2025. https://www.accesswater.org/?id=-288136CITANCHOR.
Matthew C. Morley# Gerald E. Speitel
Methods for Enhancing the Desorption of High Explosives from Activated Carbon
Access Water
Water Environment Federation
December 22, 2018
June 6, 2025
https://www.accesswater.org/?id=-288136CITANCHOR