lastID = -291019
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2020-01-31 22:55:35 Administrator
  • 2020-01-31 22:55:34 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS

EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS

EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS
Abstract
The U.S. Environmental Protection Agency (EPA) has identified stormwater runoff as a leading cause of water quality impairment nationwide. In order to prevent water-quality degradation due to urbanization, stormwater runoff from certain locations should be treated prior to discharge to prevent harm either to the surface waters or to the groundwater. One potentially cost-effective approach is the treatment of runoff from these “critical source areas” (locations where pollutant contributions appear to be higher) before it mixes with cleaner runoff from ‘non-problem’ areas. Past research has shown that filtration can be effective in reducing pollutant levels in stormwater runoff prior to its discharge.In this research, an upflow filtration system was designed and developed, and the effectiveness of upflow filtration was demonstrated. Four different filtration media, namely, lightweight sand (pool sand meant for swimming pool filters), fine (sandblast) grade sand, peat moss and compost were examined in bench-scale upflow filters for solids removal. The purpose of the overall research project was threefold: first, to investigate the applicability of upflow filtration for stormwater treatment; second, to investigate the removal capacity of the various filter media when used in upflow mode; and, third, to evaluate the applicability of an upflow pilot-scale filter using an influent of pre-settled stormwater runoff. The objectives of the bench-scale research were to determine (1) for each medium, the optimum flow rate (no rising or separation of either the media from the gravel layer or within the media itself) where suspended solids removal was “best”; (2) the suspended solids loading on the media that reduced the flow rate to certain end points; (3) the breakthrough point (i.e., where the effluent concentration equaled the influent concentration) for each media. Influent and effluent samples were collected throughout the run and analyzed for turbidity, total solids and particle size distribution.Pilot-scale testing was conducted to replicate the design employed in the laboratory and investigate potential scale-up issues. The test water was from a stormwater detention pond in Hoover, AL. The media selected for the pilot-scale testing were the same four media used in the laboratory. The results of the upflow pilot-scale tests are compared with prior downflow tests using the same media and test water.
The U.S. Environmental Protection Agency (EPA) has identified stormwater runoff as a leading cause of water quality impairment nationwide. In order to prevent water-quality degradation due to urbanization, stormwater runoff from certain locations should be treated prior to discharge to prevent harm either to the surface waters or to the groundwater. One potentially cost-effective approach is the...
Author(s)
M. PratapS. E. ClarkR. PittP.D. Johnson
SourceProceedings of the Water Environment Federation
SubjectSession 19: Wastewater Treatment Innovations
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2004
ISSN1938-6478
SICI1938-6478(20040101)2004:15L.643;1-
DOI10.2175/193864704784148006
Volume / Issue2004 / 15
Content sourceWEFTEC
First / last page(s)643 - 671
Copyright2004
Word count373

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS
Pricing
Non-member price: $11.50
Member price:
-291019
Get access
-291019
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS
Abstract
The U.S. Environmental Protection Agency (EPA) has identified stormwater runoff as a leading cause of water quality impairment nationwide. In order to prevent water-quality degradation due to urbanization, stormwater runoff from certain locations should be treated prior to discharge to prevent harm either to the surface waters or to the groundwater. One potentially cost-effective approach is the treatment of runoff from these “critical source areas” (locations where pollutant contributions appear to be higher) before it mixes with cleaner runoff from ‘non-problem’ areas. Past research has shown that filtration can be effective in reducing pollutant levels in stormwater runoff prior to its discharge.In this research, an upflow filtration system was designed and developed, and the effectiveness of upflow filtration was demonstrated. Four different filtration media, namely, lightweight sand (pool sand meant for swimming pool filters), fine (sandblast) grade sand, peat moss and compost were examined in bench-scale upflow filters for solids removal. The purpose of the overall research project was threefold: first, to investigate the applicability of upflow filtration for stormwater treatment; second, to investigate the removal capacity of the various filter media when used in upflow mode; and, third, to evaluate the applicability of an upflow pilot-scale filter using an influent of pre-settled stormwater runoff. The objectives of the bench-scale research were to determine (1) for each medium, the optimum flow rate (no rising or separation of either the media from the gravel layer or within the media itself) where suspended solids removal was “best”; (2) the suspended solids loading on the media that reduced the flow rate to certain end points; (3) the breakthrough point (i.e., where the effluent concentration equaled the influent concentration) for each media. Influent and effluent samples were collected throughout the run and analyzed for turbidity, total solids and particle size distribution.Pilot-scale testing was conducted to replicate the design employed in the laboratory and investigate potential scale-up issues. The test water was from a stormwater detention pond in Hoover, AL. The media selected for the pilot-scale testing were the same four media used in the laboratory. The results of the upflow pilot-scale tests are compared with prior downflow tests using the same media and test water.
The U.S. Environmental Protection Agency (EPA) has identified stormwater runoff as a leading cause of water quality impairment nationwide. In order to prevent water-quality degradation due to urbanization, stormwater runoff from certain locations should be treated prior to discharge to prevent harm either to the surface waters or to the groundwater. One potentially cost-effective approach is the...
Author(s)
M. PratapS. E. ClarkR. PittP.D. Johnson
SourceProceedings of the Water Environment Federation
SubjectSession 19: Wastewater Treatment Innovations
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2004
ISSN1938-6478
SICI1938-6478(20040101)2004:15L.643;1-
DOI10.2175/193864704784148006
Volume / Issue2004 / 15
Content sourceWEFTEC
First / last page(s)643 - 671
Copyright2004
Word count373

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
M. Pratap# S. E. Clark# R. Pitt# P.D. Johnson. EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 2 Jul. 2025. <https://www.accesswater.org?id=-291019CITANCHOR>.
M. Pratap# S. E. Clark# R. Pitt# P.D. Johnson. EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed July 2, 2025. https://www.accesswater.org/?id=-291019CITANCHOR.
M. Pratap# S. E. Clark# R. Pitt# P.D. Johnson
EVALUATION OF UPFLOW FILTERS FOR STORMWATER TREATMENT AT CRITICAL SOURCE AREAS
Access Water
Water Environment Federation
December 22, 2018
July 2, 2025
https://www.accesswater.org/?id=-291019CITANCHOR