lastID = -291393
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-05-06 16:51:10 Adam Phillips
  • 2022-05-06 16:51:09 Adam Phillips
  • 2020-03-27 02:45:31 Adam Phillips
  • 2020-01-31 19:36:57 Administrator
  • 2020-01-31 19:36:56 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS

ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS

ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS
Abstract
A mathematical sediment-transport model, SEDMOD, was used to simulate stream flows and sediment transport in a river channel with four low-head dams on the Kalamazoo River in Michigan. The steady-state 1-dimensional model uses time-varying hydrographs to compute the resultant scour and fill at any given location in the river reach. Different modeling scenarios were generated to assess sediment transport under varying hydraulic conditions. The model was calibrated using root mean square error (RMSE) as an objective function for measuring the goodness-of-fit between the model-computed suspended-sediment transport rates and observed suspended-sediment data. Calibrated model results show close agreement between simulated and measured values of suspended sediments.Analyses of the model results show that the Kalamazoo River sediment-transport mechanism is in a dynamic-equilibrium state. Analysis of the model results shows that significant sediment erosion from the study reach occurred at flow rates higher than 55 m3/sec. And sediment deposition mainly occurred during low-to-average flow conditions (monthly mean flows between 25.49 m3/sec and 50.97 m3/sec), following a high flow event until the system reached equilibrium.Because the dams in the study reach have low heads and no control gates, the 1947 flood flow simulations show no significant difference between the transport rates during the “dam in” and “dam out” scenarios. Therefore, during high flow conditions, approximately the same magnitudes of velocities are generated in the backwater sections in both scenarios, which produce the same impact on sediment-erosion rates. It is important to note that the “dam in” and “dam out” scenarios simulations are run for only 60 days, which takes into account only the instantaneous changes in sediment erosion and deposition rates during that time period. Over an extended period of time, it is expected that more erosion will occur if the dams are removed from the study reach than under the existing conditions. Based on the simulations, removal of dams would further lower the head in all the channels producing higher velocities even during low-to-average flow conditions, which would result in accelerated erosion rates throughout the study reach.
A mathematical sediment-transport model, SEDMOD, was used to simulate stream flows and sediment transport in a river channel with four low-head dams on the Kalamazoo River in Michigan. The steady-state 1-dimensional model uses time-varying hydrographs to compute the resultant scour and fill at any given location in the river reach. Different modeling scenarios were generated to assess sediment...
Author(s)
Atiq U. SyedJames P. Bennett
SourceProceedings of the Water Environment Federation
SubjectSession 11: Modeling II
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2004
ISSN1938-6478
SICI1938-6478(20040101)2004:4L.1206;1-
DOI10.2175/193864704790896234
Volume / Issue2004 / 4
Content sourceWatershed Conference
First / last page(s)1206 - 1235
Copyright2004
Word count342

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS
Pricing
Non-member price: $11.50
Member price:
-291393
Get access
-291393
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS
Abstract
A mathematical sediment-transport model, SEDMOD, was used to simulate stream flows and sediment transport in a river channel with four low-head dams on the Kalamazoo River in Michigan. The steady-state 1-dimensional model uses time-varying hydrographs to compute the resultant scour and fill at any given location in the river reach. Different modeling scenarios were generated to assess sediment transport under varying hydraulic conditions. The model was calibrated using root mean square error (RMSE) as an objective function for measuring the goodness-of-fit between the model-computed suspended-sediment transport rates and observed suspended-sediment data. Calibrated model results show close agreement between simulated and measured values of suspended sediments.Analyses of the model results show that the Kalamazoo River sediment-transport mechanism is in a dynamic-equilibrium state. Analysis of the model results shows that significant sediment erosion from the study reach occurred at flow rates higher than 55 m3/sec. And sediment deposition mainly occurred during low-to-average flow conditions (monthly mean flows between 25.49 m3/sec and 50.97 m3/sec), following a high flow event until the system reached equilibrium.Because the dams in the study reach have low heads and no control gates, the 1947 flood flow simulations show no significant difference between the transport rates during the “dam in” and “dam out” scenarios. Therefore, during high flow conditions, approximately the same magnitudes of velocities are generated in the backwater sections in both scenarios, which produce the same impact on sediment-erosion rates. It is important to note that the “dam in” and “dam out” scenarios simulations are run for only 60 days, which takes into account only the instantaneous changes in sediment erosion and deposition rates during that time period. Over an extended period of time, it is expected that more erosion will occur if the dams are removed from the study reach than under the existing conditions. Based on the simulations, removal of dams would further lower the head in all the channels producing higher velocities even during low-to-average flow conditions, which would result in accelerated erosion rates throughout the study reach.
A mathematical sediment-transport model, SEDMOD, was used to simulate stream flows and sediment transport in a river channel with four low-head dams on the Kalamazoo River in Michigan. The steady-state 1-dimensional model uses time-varying hydrographs to compute the resultant scour and fill at any given location in the river reach. Different modeling scenarios were generated to assess sediment...
Author(s)
Atiq U. SyedJames P. Bennett
SourceProceedings of the Water Environment Federation
SubjectSession 11: Modeling II
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2004
ISSN1938-6478
SICI1938-6478(20040101)2004:4L.1206;1-
DOI10.2175/193864704790896234
Volume / Issue2004 / 4
Content sourceWatershed Conference
First / last page(s)1206 - 1235
Copyright2004
Word count342

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Atiq U. Syed# James P. Bennett. ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 8 Jun. 2025. <https://www.accesswater.org?id=-291393CITANCHOR>.
Atiq U. Syed# James P. Bennett. ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 8, 2025. https://www.accesswater.org/?id=-291393CITANCHOR.
Atiq U. Syed# James P. Bennett
ANALYSIS OF SEDIMENT TRANSPORT ASSOCIATED WITH LOW-HEAD DAMS
Access Water
Water Environment Federation
December 22, 2018
June 8, 2025
https://www.accesswater.org/?id=-291393CITANCHOR