lastID = -292557
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2020-01-31 20:43:09 Administrator
  • 2020-01-31 20:43:08 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY

CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY

CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY
Abstract
Wastewater collection system models have become important planning and management tools, commonly used for Capital Improvement Project (CIP) development. With the advent of sophisticated modeling software, improved flow monitoring technology, and Geographic Information Systems (GIS), dynamic modeling is being taken one step further towards design. With modeling software, agencies are recognizing significant cost-savings by quantifying specific facility needs to maintain desired performance levels, as opposed to more traditional methods of applying design criteria equally throughout an entire collection system. Models used for design, however, are only as good as the calibration. For an agency like the Madison Metropolitan Sewerage District (MMSD), whose aging collection system includes over 100 miles of interceptor sewer and 17 large pumping stations, calibration can be challenging.In MMSD's system, pump stations have a profound effect on the overall model results. The Danish Hydraulic Institute's (DHI) MOUSE model, developed for the MMSD system, includes 22 pump stations containing 62 pumps. Each pump station has different operational settings and sequencing, which include variable speed pumps and complex parallel pumping scenarios. Because downstream flow rates are dependent on upstream pump station operation, accurately simulating pump station operation was critical to the overall model calibration. Therefore this paper will provide a discussion on the techniques used to accurately simulate the pump station operation using MOUSE's real time control (RTC) module, by comparing model results against detailed pump station flow data, pump run-time data, and wet-well levels. Spending the time to accurately calibrate the pump station operation will allow the District to evaluate, with certainty, different pumping scenarios and operational settings, allowing them to optimize flows in their system and reduce potential capital improvement costs.Additionally, this paper will discuss the use of advanced tools like MOUSE's Rainfall Dependent Infiltration (RDII) module to accurately simulate all forms of Inflow and Infiltration (I/I) including overland flow, interflow, and groundwater flow. This allows the District to better understand the type of I/I flow response in each calibration basin. Understanding the type and quantity of I/I will help determine what types of I/I control measures should be implemented for each particular basin, allowing the District to select the most cost-effective set of I/I control measures. Additionally, accounting for lake level influence on wastewater flows (indirectly through increased groundwater levels) in the Madison system was only possible through the use of advanced tools in the RDII module.Finally, the paper will describe the various data sources used for dry-weather calibration and the calibration challenges and limitations associated with each data type including pump station flow data; temporary flow meter data; water utility records; billing records, and pump station wet-well level data.
Wastewater collection system models have become important planning and management tools, commonly used for Capital Improvement Project (CIP) development. With the advent of sophisticated modeling software, improved flow monitoring technology, and Geographic Information Systems (GIS), dynamic modeling is being taken one step further towards design. With modeling software, agencies are recognizing...
Author(s)
Bryan RogneTodd GebertJennifer HurlebausMike Agbodo
SourceProceedings of the Water Environment Federation
SubjectSession 110: Computer Applications and Instrumentation: Wastewater Design - Hydraulic Modeling
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2005
ISSN1938-6478
SICI1938-6478(20050101)2005:6L.8737;1-
DOI10.2175/193864705783812738
Volume / Issue2005 / 6
Content sourceWEFTEC
First / last page(s)8737 - 8760
Copyright2005
Word count446

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY
Pricing
Non-member price: $11.50
Member price:
-292557
Get access
-292557
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY
Abstract
Wastewater collection system models have become important planning and management tools, commonly used for Capital Improvement Project (CIP) development. With the advent of sophisticated modeling software, improved flow monitoring technology, and Geographic Information Systems (GIS), dynamic modeling is being taken one step further towards design. With modeling software, agencies are recognizing significant cost-savings by quantifying specific facility needs to maintain desired performance levels, as opposed to more traditional methods of applying design criteria equally throughout an entire collection system. Models used for design, however, are only as good as the calibration. For an agency like the Madison Metropolitan Sewerage District (MMSD), whose aging collection system includes over 100 miles of interceptor sewer and 17 large pumping stations, calibration can be challenging.In MMSD's system, pump stations have a profound effect on the overall model results. The Danish Hydraulic Institute's (DHI) MOUSE model, developed for the MMSD system, includes 22 pump stations containing 62 pumps. Each pump station has different operational settings and sequencing, which include variable speed pumps and complex parallel pumping scenarios. Because downstream flow rates are dependent on upstream pump station operation, accurately simulating pump station operation was critical to the overall model calibration. Therefore this paper will provide a discussion on the techniques used to accurately simulate the pump station operation using MOUSE's real time control (RTC) module, by comparing model results against detailed pump station flow data, pump run-time data, and wet-well levels. Spending the time to accurately calibrate the pump station operation will allow the District to evaluate, with certainty, different pumping scenarios and operational settings, allowing them to optimize flows in their system and reduce potential capital improvement costs.Additionally, this paper will discuss the use of advanced tools like MOUSE's Rainfall Dependent Infiltration (RDII) module to accurately simulate all forms of Inflow and Infiltration (I/I) including overland flow, interflow, and groundwater flow. This allows the District to better understand the type of I/I flow response in each calibration basin. Understanding the type and quantity of I/I will help determine what types of I/I control measures should be implemented for each particular basin, allowing the District to select the most cost-effective set of I/I control measures. Additionally, accounting for lake level influence on wastewater flows (indirectly through increased groundwater levels) in the Madison system was only possible through the use of advanced tools in the RDII module.Finally, the paper will describe the various data sources used for dry-weather calibration and the calibration challenges and limitations associated with each data type including pump station flow data; temporary flow meter data; water utility records; billing records, and pump station wet-well level data.
Wastewater collection system models have become important planning and management tools, commonly used for Capital Improvement Project (CIP) development. With the advent of sophisticated modeling software, improved flow monitoring technology, and Geographic Information Systems (GIS), dynamic modeling is being taken one step further towards design. With modeling software, agencies are recognizing...
Author(s)
Bryan RogneTodd GebertJennifer HurlebausMike Agbodo
SourceProceedings of the Water Environment Federation
SubjectSession 110: Computer Applications and Instrumentation: Wastewater Design - Hydraulic Modeling
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2005
ISSN1938-6478
SICI1938-6478(20050101)2005:6L.8737;1-
DOI10.2175/193864705783812738
Volume / Issue2005 / 6
Content sourceWEFTEC
First / last page(s)8737 - 8760
Copyright2005
Word count446

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Bryan Rogne# Todd Gebert# Jennifer Hurlebaus# Mike Agbodo. CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 12 Jun. 2025. <https://www.accesswater.org?id=-292557CITANCHOR>.
Bryan Rogne# Todd Gebert# Jennifer Hurlebaus# Mike Agbodo. CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 12, 2025. https://www.accesswater.org/?id=-292557CITANCHOR.
Bryan Rogne# Todd Gebert# Jennifer Hurlebaus# Mike Agbodo
CALIBRATION TECHNIQUES FOR MODELING COMPLEX SYSTEMS – A MADISON, WISCONSIN CASE STUDY
Access Water
Water Environment Federation
December 22, 2018
June 12, 2025
https://www.accesswater.org/?id=-292557CITANCHOR