lastID = -295593
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-06-14 20:27:17 Adam Phillips
  • 2020-03-27 00:03:08 Adam Phillips
  • 2020-03-27 00:03:07 Adam Phillips
  • 2020-01-31 22:08:10 Administrator
  • 2020-01-31 22:08:09 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD

Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD

Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD
Abstract
Previous studies have cited differences in predicted impacts from the Industrial Source Complex (ISC) model and the AERMOD model (Diosey, 2002 and Porter, 2003). These studies compared the overall difference of the models when predicting impacts from treatment process as a whole. More recent studies (Porter, 2004 and 2007) have cited the difference in predictions for point or area sources when the different dispersion models were used.One particular issue identified in the U.S. Environmental Protection Agency's (EPA) model performance evaluation was that low level point sources from process units tended to be under-predicted by AERMOD relative to ISC, while area sources tended to be over-predicted. This suggests that odor impacts using AERMOD would shift the control strategies from reducing offsite odor impacts from enclosed process areas (headworks facilities and solids processing) to open tanks and basins (primary clarifiers and aeration basins).This study examines the point and area source algorithms in the AERMOD model and discusses how differences occur. While EPA used field studies to demonstrate the performance of the AERMOD model, these field studies were not representative of short process stacks or open basins. Thus, the differences may in part be due to the changes in the dispersion algorithm or in the way the atmospheric boundary layer is characterized in the more refined AERMOD dispersion model.Key to both the characterization of the surface boundary layer and dispersion algorithm is the way in which the local land use parameters, albedo, surface roughness, and Bowen ratio are defined. A comparison is made that highlights the sensitivity of the AERMOD model to the selection of land use parameters for predicting offsite odor impacts. The treatment of vertical temperature and wind speed lapse rates is also discussed because lower wind speeds along the near surface layer could result in higher offsite odor impacts.While the AERMOD model will generally predict impacts that are 30 to 40 percent lower than ISCST3, some impacts can be 25 percent higher when subject to the influences of building cavity and wake effects or more than 60 percent lower when impacting elevated terrain.
Previous studies have cited differences in predicted impacts from the Industrial Source Complex (ISC) model and the AERMOD model (Diosey, 2002 and Porter, 2003). These studies compared the overall difference of the models when predicting impacts from treatment process as a whole. More recent studies (Porter, 2004 and 2007) have cited the difference in predictions for point or area sources when the...
Author(s)
Raymond C. Porter
SourceProceedings of the Water Environment Federation
SubjectSession 7: Fate and Odor Modeling
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2008
ISSN1938-6478
SICI1938-6478(20080101)2008:4L.440;1-
DOI10.2175/193864708788807835
Volume / Issue2008 / 4
Content sourceOdors and Air Pollutants Conference
First / last page(s)440 - 449
Copyright2008
Word count355

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD
Pricing
Non-member price: $11.50
Member price:
-295593
Get access
-295593
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD
Abstract
Previous studies have cited differences in predicted impacts from the Industrial Source Complex (ISC) model and the AERMOD model (Diosey, 2002 and Porter, 2003). These studies compared the overall difference of the models when predicting impacts from treatment process as a whole. More recent studies (Porter, 2004 and 2007) have cited the difference in predictions for point or area sources when the different dispersion models were used.One particular issue identified in the U.S. Environmental Protection Agency's (EPA) model performance evaluation was that low level point sources from process units tended to be under-predicted by AERMOD relative to ISC, while area sources tended to be over-predicted. This suggests that odor impacts using AERMOD would shift the control strategies from reducing offsite odor impacts from enclosed process areas (headworks facilities and solids processing) to open tanks and basins (primary clarifiers and aeration basins).This study examines the point and area source algorithms in the AERMOD model and discusses how differences occur. While EPA used field studies to demonstrate the performance of the AERMOD model, these field studies were not representative of short process stacks or open basins. Thus, the differences may in part be due to the changes in the dispersion algorithm or in the way the atmospheric boundary layer is characterized in the more refined AERMOD dispersion model.Key to both the characterization of the surface boundary layer and dispersion algorithm is the way in which the local land use parameters, albedo, surface roughness, and Bowen ratio are defined. A comparison is made that highlights the sensitivity of the AERMOD model to the selection of land use parameters for predicting offsite odor impacts. The treatment of vertical temperature and wind speed lapse rates is also discussed because lower wind speeds along the near surface layer could result in higher offsite odor impacts.While the AERMOD model will generally predict impacts that are 30 to 40 percent lower than ISCST3, some impacts can be 25 percent higher when subject to the influences of building cavity and wake effects or more than 60 percent lower when impacting elevated terrain.
Previous studies have cited differences in predicted impacts from the Industrial Source Complex (ISC) model and the AERMOD model (Diosey, 2002 and Porter, 2003). These studies compared the overall difference of the models when predicting impacts from treatment process as a whole. More recent studies (Porter, 2004 and 2007) have cited the difference in predictions for point or area sources when the...
Author(s)
Raymond C. Porter
SourceProceedings of the Water Environment Federation
SubjectSession 7: Fate and Odor Modeling
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2008
ISSN1938-6478
SICI1938-6478(20080101)2008:4L.440;1-
DOI10.2175/193864708788807835
Volume / Issue2008 / 4
Content sourceOdors and Air Pollutants Conference
First / last page(s)440 - 449
Copyright2008
Word count355

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Raymond C. Porter. Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 6 Jun. 2025. <https://www.accesswater.org?id=-295593CITANCHOR>.
Raymond C. Porter. Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 6, 2025. https://www.accesswater.org/?id=-295593CITANCHOR.
Raymond C. Porter
Dispersion Model Parameters that Affect the Impacts from Area Sources using AERMOD
Access Water
Water Environment Federation
December 22, 2018
June 6, 2025
https://www.accesswater.org/?id=-295593CITANCHOR