lastID = -296227
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Loading icon
Description: Access Water
Context Menu
Description: Book cover
BioWin Modeling of a Three Reactor IFAS System
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2020-01-31 20:36:22 Administrator
  • 2020-01-31 20:36:21 Administrator
  • 2020-01-31 20:36:20 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
BioWin Modeling of a Three Reactor IFAS System

BioWin Modeling of a Three Reactor IFAS System

BioWin Modeling of a Three Reactor IFAS System

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
BioWin Modeling of a Three Reactor IFAS System
Abstract
The City of Greensboro (City), North Carolina, owns and operates two water reclamation facilities, T.Z. Osborne (TZO) and North Buffalo Creek (NBC) that receive and treat wastewater from the City. TZO and NBC have average day maximum month rated capacities of 40 mgd and 16 mgd, respectively, and discharge to the Haw River Arm of Everett B. Jordan Reservoir (Jordan Lake). Based on the DENR TMDL strategy for Jordan Lake, the anticipated nitrogen and phosphorus loads for the TZO and NBC treatment plants equate to potential discharge permit limits of 5.29 and 0.66 mg/L as TN and TP, respectively, at average day maximum month flows. The City contracted with CDM/Hazen and Sawyer to evaluate nutrient removal alternatives for meeting future capacity requirements. The potential cost savings of IFAS relative to the 5-stage BNR based on conceptual level analysis prompted the one-year (April 2008 – April 2009) fullscale demonstration of the IFAS technology at TZO.With data collected over the demonstration period, calibration of the IFAS reactors with BioWin was performed for two different operation periods using the calibration options available. In the current released version of BioWin (File version 3.01.802), there are two primary methods of calibrating the media bioreactor element (i.e. IFAS) to field suspended solids and biofilm conditions: biofilm density factor or attachment/detachment rates. The biofilm density factor method calibrates to the average biomass for the three series of IFAS reactors and the attachment/detachment rates could be adjusted locally for match the individual biofilm biomass profiles found in the field. A beta version of BioWin was obtained from EnviroSim Associates Limited (www.envirosim.com), in which the biofilm density factor was made available as a local parameter allowing the modeler to mimic the field biomass profile.Using two different periods of operation (2.8 mgd 7/9 – 9/17/08 and 3.5 mgd 10/8 – 12/17/08), all three methods of calibration were performed to determine how well each method could be calibrated and how calibration to one operation period's conditions could be used to predict the results of a different operational condition. The paper discusses the calibrations and presents the results of the model simulations performed under each condition. Calibration was achieved for each period using each method of calibration, but those settings did not effectively predict the solids on the biomass and in the suspended phase under the other period loading conditions. Because each method calibrates specifically to the solids on the biomass and in the suspended phase and only involves adjustment of a single parameter, the complex influences on biofilm formation, maintenance, and process performance were not calibrated to field conditions. More study is needed to identify the optimum level of detail incorporated into the modeling of fixed film reactors specifically for engineering design.
The City of Greensboro (City), North Carolina, owns and operates two water reclamation facilities, T.Z. Osborne (TZO) and North Buffalo Creek (NBC) that receive and treat wastewater from the City. TZO and NBC have average day maximum month rated capacities of 40 mgd and 16 mgd, respectively, and discharge to the Haw River Arm of Everett B. Jordan Reservoir...
Author(s)
Mike McGeheeJamie GellnerJason BeckChris WhiteTheresa BrutonDon Howard
SourceProceedings of the Water Environment Federation
SubjectSession 43 - The Benefits of Wastewater Process Modeling
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2009
ISSN1938-6478
SICI1938-6478(20090101)2009:14L.2730;1-
DOI10.2175/193864709793955122
Volume / Issue2009 / 14
Content sourceWEFTEC
First / last page(s)2730 - 2750
Copyright2009
Word count456
Subject keywordsBioWinprocess modelingIFASbiofilm

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'BioWin Modeling of a Three Reactor IFAS System'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
BioWin Modeling of a Three Reactor IFAS System
Pricing
Non-member price: $11.50
Member price:
-296227
Get access
-296227
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'BioWin Modeling of a Three Reactor IFAS System'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
BioWin Modeling of a Three Reactor IFAS System
Abstract
The City of Greensboro (City), North Carolina, owns and operates two water reclamation facilities, T.Z. Osborne (TZO) and North Buffalo Creek (NBC) that receive and treat wastewater from the City. TZO and NBC have average day maximum month rated capacities of 40 mgd and 16 mgd, respectively, and discharge to the Haw River Arm of Everett B. Jordan Reservoir (Jordan Lake). Based on the DENR TMDL strategy for Jordan Lake, the anticipated nitrogen and phosphorus loads for the TZO and NBC treatment plants equate to potential discharge permit limits of 5.29 and 0.66 mg/L as TN and TP, respectively, at average day maximum month flows. The City contracted with CDM/Hazen and Sawyer to evaluate nutrient removal alternatives for meeting future capacity requirements. The potential cost savings of IFAS relative to the 5-stage BNR based on conceptual level analysis prompted the one-year (April 2008 – April 2009) fullscale demonstration of the IFAS technology at TZO.With data collected over the demonstration period, calibration of the IFAS reactors with BioWin was performed for two different operation periods using the calibration options available. In the current released version of BioWin (File version 3.01.802), there are two primary methods of calibrating the media bioreactor element (i.e. IFAS) to field suspended solids and biofilm conditions: biofilm density factor or attachment/detachment rates. The biofilm density factor method calibrates to the average biomass for the three series of IFAS reactors and the attachment/detachment rates could be adjusted locally for match the individual biofilm biomass profiles found in the field. A beta version of BioWin was obtained from EnviroSim Associates Limited (www.envirosim.com), in which the biofilm density factor was made available as a local parameter allowing the modeler to mimic the field biomass profile.Using two different periods of operation (2.8 mgd 7/9 – 9/17/08 and 3.5 mgd 10/8 – 12/17/08), all three methods of calibration were performed to determine how well each method could be calibrated and how calibration to one operation period's conditions could be used to predict the results of a different operational condition. The paper discusses the calibrations and presents the results of the model simulations performed under each condition. Calibration was achieved for each period using each method of calibration, but those settings did not effectively predict the solids on the biomass and in the suspended phase under the other period loading conditions. Because each method calibrates specifically to the solids on the biomass and in the suspended phase and only involves adjustment of a single parameter, the complex influences on biofilm formation, maintenance, and process performance were not calibrated to field conditions. More study is needed to identify the optimum level of detail incorporated into the modeling of fixed film reactors specifically for engineering design.
The City of Greensboro (City), North Carolina, owns and operates two water reclamation facilities, T.Z. Osborne (TZO) and North Buffalo Creek (NBC) that receive and treat wastewater from the City. TZO and NBC have average day maximum month rated capacities of 40 mgd and 16 mgd, respectively, and discharge to the Haw River Arm of Everett B. Jordan Reservoir...
Author(s)
Mike McGeheeJamie GellnerJason BeckChris WhiteTheresa BrutonDon Howard
SourceProceedings of the Water Environment Federation
SubjectSession 43 - The Benefits of Wastewater Process Modeling
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2009
ISSN1938-6478
SICI1938-6478(20090101)2009:14L.2730;1-
DOI10.2175/193864709793955122
Volume / Issue2009 / 14
Content sourceWEFTEC
First / last page(s)2730 - 2750
Copyright2009
Word count456
Subject keywordsBioWinprocess modelingIFASbiofilm

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2025 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Mike McGehee# Jamie Gellner# Jason Beck# Chris White# Theresa Bruton# Don Howard. BioWin Modeling of a Three Reactor IFAS System. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 29 Oct. 2025. <https://www.accesswater.org?id=-296227CITANCHOR>.
Mike McGehee# Jamie Gellner# Jason Beck# Chris White# Theresa Bruton# Don Howard. BioWin Modeling of a Three Reactor IFAS System. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed October 29, 2025. https://www.accesswater.org/?id=-296227CITANCHOR.
Mike McGehee# Jamie Gellner# Jason Beck# Chris White# Theresa Bruton# Don Howard
BioWin Modeling of a Three Reactor IFAS System
Access Water
Water Environment Federation
December 22, 2018
October 29, 2025
https://www.accesswater.org/?id=-296227CITANCHOR