lastID = -297786
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
Biofiltration of Carbon Dioxide Using Algae
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-06-14 20:23:27 Adam Phillips
  • 2022-06-14 20:23:26 Adam Phillips
  • 2020-03-27 00:01:43 Adam Phillips
  • 2020-01-31 20:29:26 Administrator
  • 2020-01-31 20:29:25 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
Biofiltration of Carbon Dioxide Using Algae

Biofiltration of Carbon Dioxide Using Algae

Biofiltration of Carbon Dioxide Using Algae

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
Biofiltration of Carbon Dioxide Using Algae
Abstract
As this paper was being finalized, world leaders were meeting in Copenhagen to lay the ground work for a global agreement on climate change. Carbon dioxide is one of the main gases that has been implicated in global climate change or global climate disruption. Methods to control the atmospheric accumulation of carbon dioxide include scrubbing with alkaline solutions, adsorption, and bioconversion using cyanobacteria and phototrophic cultures. The first two methods are energy intensive processes and produce several environmentally unfriendly waste streams. In this paper, a novel technique for biofiltration of carbon dioxide by Tetraselmis suecica is presented here. The major advantages of using Tetraselmis suecica include: (1) the inherent buffering action of the marine algae that maintains the pH at 8.5; and (2) the requirement of a limited spectrum of light by the marine algae. Gallium-Aluminum-Arsenic (GaAlAs) light emitting diodes (LED's) emit light in the range required by Tetraselmis suecica. These GaAlAs LED's were put in series on both sides of the photobioreactor in a cascading manner for maximum photosynthesis activity. Laboratory scale experiments were carried out in a bubbling photobioreactor with different liquid recycle rate and photobioreactor conditions to determine the reaction kinetics and develop a process model that can be applied for a full-scale design. For liquid residence time of about 1 second, the carbon dioxide removal efficiency was about 4% in the photobioreactor. Further, the experimental data matched closely with the model calculations. Area requirement and pressure drop calculation carried out between a sparged bioreactor and spray chamber bioreactor for the same operating condition indicated spray chamber bioreactor to be a better alternative than a sparged bioreactor. In spray chamber bioreactor, the area requirements are about a 100 fold less than that for a sparged bioreactor. Also the pressure drop is negligible across the spray chamber bioreactor in comparison to a sparged bioreactor. Based on the process model, it has been determined that for separation of 7000 million tons CO2/year and 95 % removal efficiency, 15 units of 25 m diameter and 52 m height will be required.
As this paper was being finalized, world leaders were meeting in Copenhagen to lay the ground work for a global agreement on climate change. Carbon dioxide is one of the main gases that has been implicated in global climate change or global climate disruption. Methods to control the atmospheric accumulation of carbon dioxide include scrubbing with alkaline solutions, adsorption, and bioconversion...
Author(s)
Rakesh GovindRajit Singh
SourceProceedings of the Water Environment Federation
SubjectArticles
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2010
ISSN1938-6478
SICI1938-6478(20100101)2010:3L.640;1-
DOI10.2175/193864710802768091
Volume / Issue2010 / 3
Content sourceOdors and Air Pollutants Conference
First / last page(s)640 - 654
Copyright2010
Word count348
Subject keywordsCarbon dioxideearth warmingbiofiltrationalgae

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Biofiltration of Carbon Dioxide Using Algae'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
Biofiltration of Carbon Dioxide Using Algae
Pricing
Non-member price: $11.50
Member price:
-297786
Get access
-297786
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Biofiltration of Carbon Dioxide Using Algae'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
Biofiltration of Carbon Dioxide Using Algae
Abstract
As this paper was being finalized, world leaders were meeting in Copenhagen to lay the ground work for a global agreement on climate change. Carbon dioxide is one of the main gases that has been implicated in global climate change or global climate disruption. Methods to control the atmospheric accumulation of carbon dioxide include scrubbing with alkaline solutions, adsorption, and bioconversion using cyanobacteria and phototrophic cultures. The first two methods are energy intensive processes and produce several environmentally unfriendly waste streams. In this paper, a novel technique for biofiltration of carbon dioxide by Tetraselmis suecica is presented here. The major advantages of using Tetraselmis suecica include: (1) the inherent buffering action of the marine algae that maintains the pH at 8.5; and (2) the requirement of a limited spectrum of light by the marine algae. Gallium-Aluminum-Arsenic (GaAlAs) light emitting diodes (LED's) emit light in the range required by Tetraselmis suecica. These GaAlAs LED's were put in series on both sides of the photobioreactor in a cascading manner for maximum photosynthesis activity. Laboratory scale experiments were carried out in a bubbling photobioreactor with different liquid recycle rate and photobioreactor conditions to determine the reaction kinetics and develop a process model that can be applied for a full-scale design. For liquid residence time of about 1 second, the carbon dioxide removal efficiency was about 4% in the photobioreactor. Further, the experimental data matched closely with the model calculations. Area requirement and pressure drop calculation carried out between a sparged bioreactor and spray chamber bioreactor for the same operating condition indicated spray chamber bioreactor to be a better alternative than a sparged bioreactor. In spray chamber bioreactor, the area requirements are about a 100 fold less than that for a sparged bioreactor. Also the pressure drop is negligible across the spray chamber bioreactor in comparison to a sparged bioreactor. Based on the process model, it has been determined that for separation of 7000 million tons CO2/year and 95 % removal efficiency, 15 units of 25 m diameter and 52 m height will be required.
As this paper was being finalized, world leaders were meeting in Copenhagen to lay the ground work for a global agreement on climate change. Carbon dioxide is one of the main gases that has been implicated in global climate change or global climate disruption. Methods to control the atmospheric accumulation of carbon dioxide include scrubbing with alkaline solutions, adsorption, and bioconversion...
Author(s)
Rakesh GovindRajit Singh
SourceProceedings of the Water Environment Federation
SubjectArticles
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2010
ISSN1938-6478
SICI1938-6478(20100101)2010:3L.640;1-
DOI10.2175/193864710802768091
Volume / Issue2010 / 3
Content sourceOdors and Air Pollutants Conference
First / last page(s)640 - 654
Copyright2010
Word count348
Subject keywordsCarbon dioxideearth warmingbiofiltrationalgae

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Rakesh Govind# Rajit Singh. Biofiltration of Carbon Dioxide Using Algae. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 6 Jun. 2025. <https://www.accesswater.org?id=-297786CITANCHOR>.
Rakesh Govind# Rajit Singh. Biofiltration of Carbon Dioxide Using Algae. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 6, 2025. https://www.accesswater.org/?id=-297786CITANCHOR.
Rakesh Govind# Rajit Singh
Biofiltration of Carbon Dioxide Using Algae
Access Water
Water Environment Federation
December 22, 2018
June 6, 2025
https://www.accesswater.org/?id=-297786CITANCHOR