lastID = -287288
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-06-14 20:12:38 Adam Phillips
  • 2022-06-14 20:12:37 Adam Phillips
  • 2020-03-26 22:53:30 Adam Phillips
  • 2020-02-01 05:59:31 Administrator
  • 2020-02-01 05:59:30 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW

ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW

ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW
Abstract
The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as an disinfecting agent, its practical applications, doseresponse relationships, and factors affecting its performance, including influent quality and type of UV system used. The efficiency of light disinfection is strongly dependent on the quality of the influent and the occluding effects of solids. This dependency is very important for treatment of low quality water such as CSO, and it is being investigated in pilot-scale studies.Disinfection of CSO significantly decreases the discharge of pathogens into receiving waters. The national CSO Control Policy requires disinfection in areas where it is required by state and local authorities after primary clarification (EPA, Combined Sewer Overflow Control Policy, 59 Federal Register 18688, April 19,1994). The high flowrates and volumes of CSO together with its high suspended solids content, variable temperature, and disinfectant-resistant microorganisms require use of high-rate disinfection techniques with powerful microbe-killing capabilities (Field, 1996). Conventional disinfectants, e.g., chlorine gas and sodium hypochlorite having rapid oxidation capabilities and relatively low cost are suitable for use in high-rate processes and are effective for CSO. However, due to the high flowrates, volumes, and chlorine demand of CSO, effective treatment requires a relatively high chlorine concentration potentially resulting in a high level of toxic byproducts and chlorine residuals in receiving waters. Because chlorine and its byproducts have a negative impact on aquatic life, alternative disinfection processes are been investigated. Based on our investigations, UV irradiation has a potential to be used in high-rate processes.UV light disinfection is a physical procedure that does not alter the smell or chemical composition of water. Its use eliminates the need for chemicals, their associated transportation, handling, and storage, as well as use of expensive dechlorination facilities (Stinson et al., 1999). It eliminates large disinfection facility buildings, large contact tanks, and associated real estate. Thus, the capital and operating costs of this technology as well as costly liability insurance premiums are greatly decreased. All of these benefits make UV light an attractive alternative to chlorination. UV is already being used for secondary and tertiary quality waters (Ashok et al., 1997). Laboratory and pilot-scale research indicates that UV light is a promising disinfectant for CSO applications. However, full-scale verification of its disinfection efficiency in CSO influent is still needed. Presently, there are no full-scale UV facilities in use today for the disinfection of CSO.
The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as an disinfecting agent, its practical applications, doseresponse relationships, and factors affecting its performance, including influent quality and type of UV system...
Author(s)
Izabela WojtenkoMary K. StinsonRichard Field
SourceProceedings of the Water Environment Federation
SubjectSESSION 5: CSO/SSOs
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2000
ISSN1938-6478
SICI1938-6478(20000101)2000:2L.280;1-
DOI10.2175/193864700785372181
Volume / Issue2000 / 2
Content sourceDisinfection and Reuse Symposium
First / last page(s)280 - 300
Copyright2000
Word count420

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW
Pricing
Non-member price: $11.50
Member price:
-287288
Get access
-287288
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW
Abstract
The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as an disinfecting agent, its practical applications, doseresponse relationships, and factors affecting its performance, including influent quality and type of UV system used. The efficiency of light disinfection is strongly dependent on the quality of the influent and the occluding effects of solids. This dependency is very important for treatment of low quality water such as CSO, and it is being investigated in pilot-scale studies.Disinfection of CSO significantly decreases the discharge of pathogens into receiving waters. The national CSO Control Policy requires disinfection in areas where it is required by state and local authorities after primary clarification (EPA, Combined Sewer Overflow Control Policy, 59 Federal Register 18688, April 19,1994). The high flowrates and volumes of CSO together with its high suspended solids content, variable temperature, and disinfectant-resistant microorganisms require use of high-rate disinfection techniques with powerful microbe-killing capabilities (Field, 1996). Conventional disinfectants, e.g., chlorine gas and sodium hypochlorite having rapid oxidation capabilities and relatively low cost are suitable for use in high-rate processes and are effective for CSO. However, due to the high flowrates, volumes, and chlorine demand of CSO, effective treatment requires a relatively high chlorine concentration potentially resulting in a high level of toxic byproducts and chlorine residuals in receiving waters. Because chlorine and its byproducts have a negative impact on aquatic life, alternative disinfection processes are been investigated. Based on our investigations, UV irradiation has a potential to be used in high-rate processes.UV light disinfection is a physical procedure that does not alter the smell or chemical composition of water. Its use eliminates the need for chemicals, their associated transportation, handling, and storage, as well as use of expensive dechlorination facilities (Stinson et al., 1999). It eliminates large disinfection facility buildings, large contact tanks, and associated real estate. Thus, the capital and operating costs of this technology as well as costly liability insurance premiums are greatly decreased. All of these benefits make UV light an attractive alternative to chlorination. UV is already being used for secondary and tertiary quality waters (Ashok et al., 1997). Laboratory and pilot-scale research indicates that UV light is a promising disinfectant for CSO applications. However, full-scale verification of its disinfection efficiency in CSO influent is still needed. Presently, there are no full-scale UV facilities in use today for the disinfection of CSO.
The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as an disinfecting agent, its practical applications, doseresponse relationships, and factors affecting its performance, including influent quality and type of UV system...
Author(s)
Izabela WojtenkoMary K. StinsonRichard Field
SourceProceedings of the Water Environment Federation
SubjectSESSION 5: CSO/SSOs
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2000
ISSN1938-6478
SICI1938-6478(20000101)2000:2L.280;1-
DOI10.2175/193864700785372181
Volume / Issue2000 / 2
Content sourceDisinfection and Reuse Symposium
First / last page(s)280 - 300
Copyright2000
Word count420

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Izabela Wojtenko# Mary K. Stinson# Richard Field. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 10 Jun. 2025. <https://www.accesswater.org?id=-287288CITANCHOR>.
Izabela Wojtenko# Mary K. Stinson# Richard Field. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 10, 2025. https://www.accesswater.org/?id=-287288CITANCHOR.
Izabela Wojtenko# Mary K. Stinson# Richard Field
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW
Access Water
Water Environment Federation
December 22, 2018
June 10, 2025
https://www.accesswater.org/?id=-287288CITANCHOR