lastID = -293400
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
Use of In-Line Inflatable Dams for CSO Control
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-05-06 18:36:44 Adam Phillips
  • 2022-05-06 18:36:43 Adam Phillips
  • 2020-02-01 06:09:39 Administrator
  • 2020-02-01 06:09:38 Administrator
  • 2020-02-01 06:09:37 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
Use of In-Line Inflatable Dams for CSO Control

Use of In-Line Inflatable Dams for CSO Control

Use of In-Line Inflatable Dams for CSO Control

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
Use of In-Line Inflatable Dams for CSO Control
Abstract
The Detroit Water and Sewerage Department (DWSD) recently installed thirteen (13) in-line in-system storage devices (ISDs) in large combined sewers in Dearborn, Detroit, Hamtramck and Highland Park, Michigan. The ISDs are designed to store combined sewage in the sewers during wet weather, especially during smaller storms that do not utilize the full transport capacity of the sewers. The ISDs are inflatable dams that are controlled based on upstream and downstream wastewater levels and dam pressure.The ISD project is one element of the Long Term Combined Sewer Overflow (CSO) Program for DWSD, consistent with the CSO Control Policy of the U.S. EPA (April 1994). The ISDs maximize the use of the collection system for storage which is one of the “Nine Minimum Controls” listed in the EPA Policy.Control schemes for the ISDs were initially developed and tested using Transient Analysis Program (TAP) models of the ISDs and sewers. An important design criterion for the ISD project was that the number of level sensors required for control of the inflatable dams be minimized. During the design of the ISD project, it was determined that twenty-two (22) level sensors were required for proper control of the ISDs.Seven (7) of the ISDs are standalone with upstream and downstream level sensors at each ISD site. Four (4) ISDs are in series along the First Hamilton sewer. Two (2) ISDs are in series in the Joy and Wetherby sewers. The two (2) most downstream ISDs in these series have both upstream and downstream level sensors at the ISD sites. The four (4) upstream ISDs are in the backwater zone of a downstream ISD and have only upstream level sensors. These ISDs use the upstream level sensor reading from the downstream ISD for control.A total of twenty-two (22) pairs of level sensors were installed for the ISD project. Ultrasonic and entrapped air level sensors were installed at each level sensor location. The ultrasonic level sensors are used for primary control. The entrapped air level sensors are used for comparison and to indicate disparity and loss of signal accuracy.The ISDs were installed from August 2002 through October 2005. The ISDs have operated from July 2005 to present and the initial control scheme was tested and fined-tuned through review of actual operating data. In April 2006, major revisions to the control scheme were implemented and extensive dry weather testing was done. Recent operating data indicate that the final control scheme is working well and as intended. Data continues to be collected for the ISDs to verify the actual CSO volumes being captured and stored at each ISD location and the reduction in the frequency of CSO.
The Detroit Water and Sewerage Department (DWSD) recently installed thirteen (13) in-line in-system storage devices (ISDs) in large combined sewers in Dearborn, Detroit, Hamtramck and Highland Park, Michigan. The ISDs are designed to store combined sewage in the sewers during wet weather, especially during smaller storms that do not utilize the full transport capacity of the sewers. The ISDs are...
Author(s)
Karen E. RidgwayMirza M. Rabbaig
SourceProceedings of the Water Environment Federation
SubjectSession 71: Stormwater Management: Treating Stormy Water
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2006
ISSN1938-6478
SICI1938-6478(20060101)2006:6L.5578;1-
DOI10.2175/193864706783775504
Volume / Issue2006 / 6
Content sourceWEFTEC
First / last page(s)5578 - 5590
Copyright2006
Word count446

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Use of In-Line Inflatable Dams for CSO Control'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
Use of In-Line Inflatable Dams for CSO Control
Pricing
Non-member price: $11.50
Member price:
-293400
Get access
-293400
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'Use of In-Line Inflatable Dams for CSO Control'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
Use of In-Line Inflatable Dams for CSO Control
Abstract
The Detroit Water and Sewerage Department (DWSD) recently installed thirteen (13) in-line in-system storage devices (ISDs) in large combined sewers in Dearborn, Detroit, Hamtramck and Highland Park, Michigan. The ISDs are designed to store combined sewage in the sewers during wet weather, especially during smaller storms that do not utilize the full transport capacity of the sewers. The ISDs are inflatable dams that are controlled based on upstream and downstream wastewater levels and dam pressure.The ISD project is one element of the Long Term Combined Sewer Overflow (CSO) Program for DWSD, consistent with the CSO Control Policy of the U.S. EPA (April 1994). The ISDs maximize the use of the collection system for storage which is one of the “Nine Minimum Controls” listed in the EPA Policy.Control schemes for the ISDs were initially developed and tested using Transient Analysis Program (TAP) models of the ISDs and sewers. An important design criterion for the ISD project was that the number of level sensors required for control of the inflatable dams be minimized. During the design of the ISD project, it was determined that twenty-two (22) level sensors were required for proper control of the ISDs.Seven (7) of the ISDs are standalone with upstream and downstream level sensors at each ISD site. Four (4) ISDs are in series along the First Hamilton sewer. Two (2) ISDs are in series in the Joy and Wetherby sewers. The two (2) most downstream ISDs in these series have both upstream and downstream level sensors at the ISD sites. The four (4) upstream ISDs are in the backwater zone of a downstream ISD and have only upstream level sensors. These ISDs use the upstream level sensor reading from the downstream ISD for control.A total of twenty-two (22) pairs of level sensors were installed for the ISD project. Ultrasonic and entrapped air level sensors were installed at each level sensor location. The ultrasonic level sensors are used for primary control. The entrapped air level sensors are used for comparison and to indicate disparity and loss of signal accuracy.The ISDs were installed from August 2002 through October 2005. The ISDs have operated from July 2005 to present and the initial control scheme was tested and fined-tuned through review of actual operating data. In April 2006, major revisions to the control scheme were implemented and extensive dry weather testing was done. Recent operating data indicate that the final control scheme is working well and as intended. Data continues to be collected for the ISDs to verify the actual CSO volumes being captured and stored at each ISD location and the reduction in the frequency of CSO.
The Detroit Water and Sewerage Department (DWSD) recently installed thirteen (13) in-line in-system storage devices (ISDs) in large combined sewers in Dearborn, Detroit, Hamtramck and Highland Park, Michigan. The ISDs are designed to store combined sewage in the sewers during wet weather, especially during smaller storms that do not utilize the full transport capacity of the sewers. The ISDs are...
Author(s)
Karen E. RidgwayMirza M. Rabbaig
SourceProceedings of the Water Environment Federation
SubjectSession 71: Stormwater Management: Treating Stormy Water
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2006
ISSN1938-6478
SICI1938-6478(20060101)2006:6L.5578;1-
DOI10.2175/193864706783775504
Volume / Issue2006 / 6
Content sourceWEFTEC
First / last page(s)5578 - 5590
Copyright2006
Word count446

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Karen E. Ridgway# Mirza M. Rabbaig. Use of In-Line Inflatable Dams for CSO Control. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 24 Jun. 2025. <https://www.accesswater.org?id=-293400CITANCHOR>.
Karen E. Ridgway# Mirza M. Rabbaig. Use of In-Line Inflatable Dams for CSO Control. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed June 24, 2025. https://www.accesswater.org/?id=-293400CITANCHOR.
Karen E. Ridgway# Mirza M. Rabbaig
Use of In-Line Inflatable Dams for CSO Control
Access Water
Water Environment Federation
December 22, 2018
June 24, 2025
https://www.accesswater.org/?id=-293400CITANCHOR