lastID = -293421
Skip to main content Skip to top navigation Skip to site search
Top of page
  • My citations options
    Web Back (from Web)
    Chicago Back (from Chicago)
    MLA Back (from MLA)
Close action menu

You need to login to use this feature.

Please wait a moment…
Please wait while we update your results...
Please wait a moment...
Description: Access Water
Context Menu
Description: Book cover
RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems
  • Browse
  • Compilations
    • Compilations list
  • Subscriptions
Tools

Related contents

Loading related content

Workflow

No linked records yet

X
  • Current: 2022-05-04 19:51:18 Adam Phillips
  • 2022-05-04 19:51:17 Adam Phillips
  • 2020-02-01 03:55:07 Administrator
  • 2020-02-01 03:55:06 Administrator
  • 2020-02-01 03:55:05 Administrator
Description: Access Water
  • Browse
  • Compilations
  • Subscriptions
Log in
0
Accessibility Options

Base text size -

This is a sample piece of body text
Larger
Smaller
  • Shopping basket (0)
  • Accessibility options
  • Return to previous
Description: Book cover
RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems

RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems

RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems

  • New
  • View
  • Details
  • Reader
  • Default
  • Share
  • Email
  • Facebook
  • Twitter
  • LinkedIn
  • New
  • View
  • Default view
  • Reader view
  • Data view
  • Details

This page cannot be printed from here

Please use the dedicated print option from the 'view' drop down menu located in the blue ribbon in the top, right section of the publication.

screenshot of print menu option

Description: Book cover
RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems
Abstract
A molecular biology based method called RT-RiboSyn has been developed to measure the specific growth rate of microbial populations. This method analyzes culture samples that have been exposed to chloramphenicol for defined times. Chloramphenicol disrupts ribosome synthesis, which causes a buildup of the level of precursor 16S rRNA within the cells. Specific microbial populations can be targeted, because of signature sequences present in both precursor and mature 16S rRNA. The method measures the rate of increase of the precursor 16S rRNA within the cells, which is used to measure the specific growth rate of a specific microbial population. This link between the specific rate of ribosome synthesis and specific growth rate for a cell is true for log growth, and also stationary phase where the specific growth rate is zero. RT-RiboSyn, is an ex situ method that utilizes a reverse transcription and primer extension (RT&PE) method to analyze the RNA extracted from a series of samples treated with chloramphenicol. A single fluorescently labeled primer that is specific for a microbial population and targets an interior region of both pre16S and 16S rRNA is employed. The pre16S/16S rRNA can be determined by separating the RT&PE products, which have different lengths, and measuring the fluorescent intensity of each. A pure culture of Acinetobacter calcoaceticus was exposed to chloramphenicol during log growth and stationary phases at two different temperatures, and a time series of samples were taken. Specific growth rates calculated with RT-RiboSyn for the log phase samples were within 16% of the specific growth rate determined from the spectrophotometer using a Eub338 probe. Further testing using the Acin0659 probe yielded specific growth rates that were within 22.5% of those calculated from spectrophotometer readings. Specific growth rates determined with RT-RiboSyn for stationary phase samples were 81% lower than rates calculated by spectrophotometer, however both rates were very low. The method has the potential to identify members of a microbial population (species or strain) that are growing rapidly relative to the other members present. This method is useful for determining the growth rates of microbial populations in natural and engineered systems, possibly allowing for the optimization of these systems.
A molecular biology based method called RT-RiboSyn has been developed to measure the specific growth rate of microbial populations. This method analyzes culture samples that have been exposed to chloramphenicol for defined times. Chloramphenicol disrupts ribosome synthesis, which causes a buildup of the level of precursor 16S rRNA within the cells. Specific microbial populations can be targeted,...
Author(s)
Matthew R. CutterPeter G. Stroot
SourceProceedings of the Water Environment Federation
SubjectSession 64: Leading Edge Research: Application of Molecular Methods
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2006
ISSN1938-6478
SICI1938-6478(20060101)2006:7L.4992;1-
DOI10.2175/193864706783763174
Volume / Issue2006 / 7
Content sourceWEFTEC
First / last page(s)4992 - 4999
Copyright2006
Word count373

Purchase price $11.50

Get access
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: Book cover
RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems
Pricing
Non-member price: $11.50
Member price:
-293421
Get access
-293421
Log in Purchase content Purchase subscription
You may already have access to this content if you have previously purchased this content or have a subscription.
Need to create an account?

You can purchase access to this content but you might want to consider a subscription for a wide variety of items at a substantial discount!

Purchase access to 'RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems'

Add to cart
Purchase a subscription to gain access to 18,000+ Proceeding Papers, 25+ Fact Sheets, 20+ Technical Reports, 50+ magazine articles and select Technical Publications' chapters.

Details

Description: Book cover
RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems
Abstract
A molecular biology based method called RT-RiboSyn has been developed to measure the specific growth rate of microbial populations. This method analyzes culture samples that have been exposed to chloramphenicol for defined times. Chloramphenicol disrupts ribosome synthesis, which causes a buildup of the level of precursor 16S rRNA within the cells. Specific microbial populations can be targeted, because of signature sequences present in both precursor and mature 16S rRNA. The method measures the rate of increase of the precursor 16S rRNA within the cells, which is used to measure the specific growth rate of a specific microbial population. This link between the specific rate of ribosome synthesis and specific growth rate for a cell is true for log growth, and also stationary phase where the specific growth rate is zero. RT-RiboSyn, is an ex situ method that utilizes a reverse transcription and primer extension (RT&PE) method to analyze the RNA extracted from a series of samples treated with chloramphenicol. A single fluorescently labeled primer that is specific for a microbial population and targets an interior region of both pre16S and 16S rRNA is employed. The pre16S/16S rRNA can be determined by separating the RT&PE products, which have different lengths, and measuring the fluorescent intensity of each. A pure culture of Acinetobacter calcoaceticus was exposed to chloramphenicol during log growth and stationary phases at two different temperatures, and a time series of samples were taken. Specific growth rates calculated with RT-RiboSyn for the log phase samples were within 16% of the specific growth rate determined from the spectrophotometer using a Eub338 probe. Further testing using the Acin0659 probe yielded specific growth rates that were within 22.5% of those calculated from spectrophotometer readings. Specific growth rates determined with RT-RiboSyn for stationary phase samples were 81% lower than rates calculated by spectrophotometer, however both rates were very low. The method has the potential to identify members of a microbial population (species or strain) that are growing rapidly relative to the other members present. This method is useful for determining the growth rates of microbial populations in natural and engineered systems, possibly allowing for the optimization of these systems.
A molecular biology based method called RT-RiboSyn has been developed to measure the specific growth rate of microbial populations. This method analyzes culture samples that have been exposed to chloramphenicol for defined times. Chloramphenicol disrupts ribosome synthesis, which causes a buildup of the level of precursor 16S rRNA within the cells. Specific microbial populations can be targeted,...
Author(s)
Matthew R. CutterPeter G. Stroot
SourceProceedings of the Water Environment Federation
SubjectSession 64: Leading Edge Research: Application of Molecular Methods
Document typeConference Paper
PublisherWater Environment Federation
Print publication date Jan, 2006
ISSN1938-6478
SICI1938-6478(20060101)2006:7L.4992;1-
DOI10.2175/193864706783763174
Volume / Issue2006 / 7
Content sourceWEFTEC
First / last page(s)4992 - 4999
Copyright2006
Word count373

Actions, changes & tasks

Outstanding Actions

Add action for paragraph

Current Changes

Add signficant change

Current Tasks

Add risk task

Connect with us

Follow us on Facebook
Follow us on Twitter
Connect to us on LinkedIn
Subscribe on YouTube
Powered by Librios Ltd
Powered by Librios Ltd
Authors
Terms of Use
Policies
Help
Accessibility
Contact us
Copyright © 2024 by the Water Environment Federation
Loading items
There are no items to display at the moment.
Something went wrong trying to load these items.
Description: WWTF Digital Boot 180x150
WWTF Digital (180x150)
Created on Jul 02
Websitehttps:/­/­www.wef.org/­wwtf?utm_medium=WWTF&utm_source=AccessWater&utm_campaign=WWTF
180x150
Matthew R. Cutter# Peter G. Stroot. RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Web. 15 Oct. 2025. <https://www.accesswater.org?id=-293421CITANCHOR>.
Matthew R. Cutter# Peter G. Stroot. RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems. Alexandria, VA 22314-1994, USA: Water Environment Federation, 2018. Accessed October 15, 2025. https://www.accesswater.org/?id=-293421CITANCHOR.
Matthew R. Cutter# Peter G. Stroot
RT-RiboSyn – A New Method to Measure the Specific Growth Rates of Distinct Microbial Populations in Engineered Systems
Access Water
Water Environment Federation
December 22, 2018
October 15, 2025
https://www.accesswater.org/?id=-293421CITANCHOR